923. 3Sum With Multiplicity

Given an integer array arr, and an integer target, return the number of tuples i, j, k such that i < j < k and arr[i] + arr[j] + arr[k] == target. As the answer can be very large, return it modulo 109 + 7.

Example 1: Input: arr = [1,1,2,2,3,3,4,4,5,5], target = 8 Output: 20 Explanation: Enumerating by the values (arr[i], arr[j], arr[k]): (1, 2, 5) occurs 8 times; (1, 3, 4) occurs 8 times; (2, 2, 4) occurs 2 times; (2, 3, 3) occurs 2 times. Example 2: Input: arr = [1,1,2,2,2,2], target = 5 Output: 12 Explanation: arr[i] = 1, arr[j] = arr[k] = 2 occurs 12 times: We choose one 1 from [1,1] in 2 ways, and two 2s from [2,2,2,2] in 6 ways.

Constraints:

3 <= arr.length <= 3000
0 <= arr[i] <= 100
0 <= target <= 300

  • code
class Solution(object):
    def threeSumMulti(self, arr: List[int], target: int) -> int:
        MOD = 10**9 + 7
        count = Counter(arr)
        ans = 0

        # All different
        for x in range(101):
            for y in range(x+1, 101):
                z = target - x - y
                if y < z <= 100:
                    ans += count[x] * count[y] * count[z]

        # x == y
        for x in range(101):
            z = target - 2*x
            if x < z <= 100:
                ans += count[x] * (count[x] - 1) // 2 * count[z]

        # y == z
        for x in range(101):
            if (target - x) % 2 == 0:
                y = (target - x) // 2
                if x < y <= 100:
                    ans += count[x] * count[y] * (count[y] - 1) // 2

        # x == y == z
        if target % 3 == 0:
            x = target // 3
            if 0 <= x <= 100:
                ans += count[x] * (count[x] - 1) * (count[x] - 2) // 6

        return ans % MOD
  • code
class Solution:
    def threeSumMulti(self, arr: List[int], target: int) -> int:
        c = collections.Counter(arr)
        res = 0
        for i, j in itertools.combinations_with_replacement(c, 2):
            # print(i, j)
            k = target - i - j
            if i == j == k: res += c[i] * (c[i] - 1) * (c[i] - 2) // 6
            elif i == j != k: res += c[i] * (c[i] - 1) // 2 * c[k]
            elif k > i and k > j: res += c[i] * c[j] * c[k]
        return res % (10**9 + 7)