Given an m x n grid of characters board and a string word, return true if word exists in the grid. The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.
Example 1: Input: board = [[“A”,“B”,“C”,“E”],[“S”,“F”,“C”,“S”],[“A”,“D”,“E”,“E”]], word = “ABCCED” Output: true
Example 2: Input: board = [[“A”,“B”,“C”,“E”],[“S”,“F”,“C”,“S”],[“A”,“D”,“E”,“E”]], word = “SEE” Output: true
Example 3: Input: board = [[“A”,“B”,“C”,“E”],[“S”,“F”,“C”,“S”],[“A”,“D”,“E”,“E”]], word = “ABCB” Output: false
Constraints:
m == board.length
n = board[i].length
1 <= m, n <= 6
1 <= word.length <= 15
board and word consists of only lowercase and uppercase English letters.
- code backtracking will return True or False
class Solution:
def exist(self, board: List[List[str]], word: str) -> bool:
board_count = Counter(char for rows in board for char in rows)
for word_char, need in Counter(word).items():
if need > board_count[word_char]: return False
m = len(board)
n = len(board[0])
def backtracking(x, y, index):
if board[x][y] != word[index]: return False
if index == len(word) - 1: return True
pre = board[x][y]
board[x][y] = ""
for dx, dy in [(1, 0), (-1, 0), (0, 1), (0, -1)]:
nx, ny = x + dx, y + dy
if 0 <= nx < m and 0 <= ny < n:
if backtracking(nx, ny, index + 1): return True
board[x][y] = pre
return False
return any(backtracking(x, y, 0) for x in range(m) for y in range(n))
- code use self.res to return, backtracking has no return value
class Solution:
def exist(self, board: List[List[str]], word: str) -> bool:
board_count = Counter(char for rows in board for char in rows)
for word_char, need in Counter(word).items():
if need > board_count[word_char]: return False
m = len(board)
n = len(board[0])
self.res = False
def backtracking(x, y, index):
if board[x][y] != word[index]: return
if index == len(word) - 1:
self.res = True
return
pre = board[x][y]
board[x][y] = ""
for dx, dy in [(1, 0), (-1, 0), (0, 1), (0, -1)]:
nx, ny = x + dx, y + dy
if 0 <= nx < m and 0 <= ny < n:
backtracking(nx, ny, index + 1)
board[x][y] = pre
for x in range(m):
for y in range(n):
backtracking(x, y, 0)
return self.res